If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+30n-50=0
a = 8; b = 30; c = -50;
Δ = b2-4ac
Δ = 302-4·8·(-50)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-50}{2*8}=\frac{-80}{16} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+50}{2*8}=\frac{20}{16} =1+1/4 $
| -9x+8+4x=-2x+5-3x+3 | | 9x-7+4x=x-3+12x-4 | | 7+1=43y | | 2(2x+3)+6x=7x-8+8x-1 | | 2r+1r=3 | | 2w+11=29 | | 140+.3x=60+.7x | | -6x-7-2x=8x+6+4x+7 | | (9+y)(3y+4)=0 | | 5b-6=24 | | 3x+5+2x+5=5(x+2) | | -24=-24-15b | | 70=7+4x | | 70-n=38;= | | 9x-3+x=4x+5+6x | | 3x+5+2x+5=(x+2) | | r-44/9=5 | | 5y+5=-39 | | -2(x-3)=-4x+6 | | 99=9(f+3) | | Y=3/9x+9 | | 24=v/3+3 | | 4.44/4=x/20 | | n=0.08n+7400 | | x+221=13 | | 2^x-10(2^-x)+3=0 | | 6(r-2)=-18 | | 11p+-8p+3p=-18 | | 3y+5=y=25 | | 3x+12-5x=8x-8 | | 8x-54=54 | | 4(8)+16+11y=180 |